

Measurement of WW/WZ--> Ivjj at 7 TeV with ATLAS

Brian Lindquist Stony Brook University

Multi-Boson Interactions Workshop
BNL
Oct 30, 2014

arXiv:1410.7238

Introduction

- Brand new result: submitted to JHEP on Oct 28!
- Goal: measure cross-section of W(lnu)W(jj) + W(lnu)Z(jj) and use lvjj final state to place limits on anomalous triple gauge couplings (aTGCs)

- Advantages compared to fully leptonic decays:
 - Higher σxBF (lvjj ~6x larger than lvlv)
 - Better kinematic constraints (only 1 v instead of 2)
- Disadvantages:
 - MUCH higher backgrounds
 - Difficult to separate W->jj from Z->jj due to dijet mass resolution ==> We don't attempt to disentangle.

Cross Section Analysis Strategy

- Biggest problem: measuring signal on top of the enormous W+jets background (S/B<~4%)
- Understanding mjj shape of backgrounds is critical

CutFlow

leptonic W

muon channel:

- ullet trigger: lowest unprescaled μ
- only 1 muon with $p_T > 25 \text{ GeV}$
- veto on second lepton
- track and calo isolation
- vertex pointing: $d_0/\sigma(d_0) < 3$

electron channel:

- trigger: lowest unprescaled e
- only 1 electron with $p_T > 25 \text{ GeV}$
- veto on second lepton
- track and calo isolation
- vertex pointing: $d_0/\sigma(d_0) < 10$

• *E*_T > 30 GeV

• $M_T(W) > 40 \text{ GeV}$

jet cleaning and overlap removal

- at least 2 good jets with $p_T > 30$, 25 GeV
- ullet $|\eta_{jet}| < 2.0$: increase S/B and select region with smaller JES uncertainty
- third jet veto for jets with $p_T > 25$ GeV and $|\eta| < 2.8$
- |JVF| > 0.75 if $|\eta| < 2.5$
- $\Delta \phi(\not\!\!E_T,j_{lead}) > 0.8$: further reduction of multijet background
- $\Delta R(j_1, j_2) > 0.7$ if $p_T(jj) < 250$ GeV: avoid mis-modeling due to a generator level cut
- $|\Delta \eta(j_1, j_2)| < 1.5$: improve S/B
- 25 GeV $< M_{ii} < 250 \text{ GeV}$

Signal/Background Samples

Signal processes	e	μ
\overline{WW}	1435 ± 70	1603 ± 79
${W \ W \ WZ}$ $MC@NLO+Herwig$	334 ± 23	370 ± 26
Background processes		
W + jets	$0.07 \pm 21) \times 10^3$	$(116 \pm 23) \times 10^3$
${W + \text{ jets} \atop Z + \text{ jets}}$ Alpgen+Herwig ${1 \atop (}$	$55 \pm 11) \times 10^2$	$(46.3 \pm 9.3) \times 10^2$
$t\bar{t}$ MC@NLO (4	$7.2 \pm 7.1) \times 10^2$	$(47.2 \pm 7.1) \times 10^2$
Single-top MC@NLO, AcerMC (2	$0.2 \pm 3.0) \times 10^2$	$(20.5 \pm 3.1) \times 10^2$
Multijet data-driven ($67 \pm 10) \times 10^2$	$(50.5 \pm 7.6) \times 10^2$
ZZ Herwig	19.2 ± 3.8	21.1 ± 4.2
Total SM prediction (1	$128 \pm 17) \times 10^3$	$(135 \pm 19) \times 10^3$
Total Data	127650	134 846

- QCD data-driven estimate from control regions enhanced in multi-jet fakes:
- Electron: fail "tight", pass "medium" ID
- Muon: invert d0sig requirement
- Normalization estimated by fitting MET in range 0<MET<400 GeV.

The Challenge

Fitting Procedure

• Fit mjj distribution, with separate templates for different background/signal components

- Systematics incorporated into fit through nuis params
- Other systematics calculated separately.

Fit Result

• Best fit $\beta = 1.11 + /-0.26$ ($\beta = sig/SM$)

$$N_e^{WV} = 1970 \pm 200 \text{ (stat.)} \pm 500 \text{ (syst.)}$$

 $N_\mu^{WV} = 2190 \pm 220 \text{ (stat.)} \pm 560 \text{ (syst.)}$

Fiducial and Total Cross sections

Fiducial
$$\sigma_{fid} = \frac{N_{meas}}{\mathcal{L} \cdot D_{fid}}$$

$$D_{fid} = f_{fid}^{WW} \cdot C^{WW} + (1 - f_{fid}^{WW}) \cdot C^{WZ}$$
Total $\sigma_{tot} = \frac{N_{meas}}{\mathcal{L} \cdot D_{tot}}$

$$D_{tot} = f_{tot}^{WW} \cdot (C \cdot \mathcal{B} \cdot A)^{WW} + (1 - f_{tot}^{WW}) \cdot (C \cdot \mathcal{B} \cdot A)^{WZ}$$

- The main difference regarding systematics is the way that A enters into the total cross-section.
- σ_{fid} has very minor dependance on A, since (A^{WW}/A^{WZ}) enters into f^{WW}_{fid}

Cross-section Results

- From fit to mjj we get:
- β =1.11 +/- 0.26
- This is converted to:

$$\sigma_{\rm fid} = 1.37 \pm 0.14 \text{ (stat.)} \pm 0.37 \text{ (syst.) pb}$$

$$\sigma_{\rm tot} = 68 \pm 7 \; ({\rm stat.}) \pm 19 \; ({\rm syst.}) \; {\rm pb}$$

• $\sigma(\text{tot,theor}) = 61.1 + /- 2.2 \text{ pb}$

• Observed significance = 3.4 sigma (from pseudoexperiments)

Cross-section Systematics

Source	$\sigma_{ m fid}$	$\sigma_{ m tot}$	
	N_{ℓ}^{T}	VV	
Data statistics		±10	
MC statistics		±12	
W/Z + jets rate and shape modelling		± 17	
Multijet shape and rate		±8	
Top rate and initial/final-state radiation shape modelling		± 6	
Jet energy scale (background and signal shapes)		± 9	
Jet energy resolution (background and signal shapes)		± 11	
WV shape modelling		:5	
	D_{fid}	D_{tot}	
JES/JER uncertainty	±6	±6	
Signal modelling		± 5	
Jet veto scale dependence		± 5	
Others (loss of spin-corr information, lepton uncertainties, PDF)		± 4	
Luminosity		±1.8	
Total systematic uncertainty	± 27	± 28	

N_{meas}
systematics
dominate

Systematics on acceptance small.

σ_{fid} and σ_{tot} have

virtually same

uncertainty

aTGC Limits

 Anomalous Triple Gauge Couplings (aTGC's) typically lead to enhanced cross-sections at high pT

Strategy

- cut tightly on 75<mjj<95 to enhance S/B
- Fit the pT(jj) spectrum to extract limits on aTGC's
- pT(jj) is better proxy than pT(l) for pT(W).

pT(jj) distribution

• pT(jj) binning optimized for best expected limits: elec

Large systematics at high pT dominated by W+jets modeling (Alpgen)

Final aTGC Limits

• All limits without form-factor.

LEP scenario

Parameter	Observed Limit	Expected Limit
$\lambda_Z = \lambda_{\gamma}$	[-0.039, 0.040]	[-0.048, 0.047]
$\Delta \kappa_{\gamma}$	[-0.21, 0.22]	[-0.23, 0.25]
Δg_1^Z	[-0.055, 0.071]	[-0.072, 0.085]

No constraint scenario

Parameter	Observed Limit	Expected Limit
λ_Z	[-0.043, 0.044]	[-0.056, 0.056]
$\Delta \kappa_Z$	[-0.090, 0.105]	[-0.11, 0.12]
Δg_1^Z	[-0.073, 0.095]	[-0.11, 0.12]
λ_{γ}	[-0.15, 0.15]	[-0.17, 0.16]
$\Delta \kappa_{\gamma}$	[-0.19, 0.23]	[-0.22, 0.25]

Interpretation in Effective Field Theory

- Follow approach in Degrande et al (arXiv:1205.4231)
- Put limits on cW, cB, cWWW, which have simple translation to aTGC's:

$$\begin{array}{cccc} \frac{c_W}{\Lambda^2} & = & \frac{2}{m_Z^2} \Delta g_1^Z & & & \Lambda \text{: scale above which} \\ \frac{c_B}{\Lambda^2} & = & \frac{2}{m_W^2} \Delta \kappa_\gamma - \frac{2}{m_Z^2} \Delta g_1^Z & & \text{EFT is not valid (i.e.} \\ \frac{c_{WWW}}{\Lambda^2} & = & \frac{2}{3g^2 m_W^2} \lambda \,, \end{array}$$

A: scale above which

Final EFT Results

Parameter	Observed Limit	Expected Limit
c_{WWW}/Λ^2	$[-9.5, 9.6] \text{ TeV}^{-2}$	[-11.6, 11.5] TeV ⁻²
c_B/Λ^2	$[-64, 69] \text{TeV}^{-2}$	$[-73, 79] \text{ TeV}^{-2}$
c_W/Λ^2	$[-13, 18] \mathrm{TeV}^{-2}$	$[-17, 21] \text{ TeV}^{-2}$

Summary

- 3.4 sigma evidence for WV-->lnujj production at 7 TeV
- Cross section in agreement with SM expectation:

$$\sigma_{\rm fid} = 1.37 \pm 0.14 \; ({\rm stat.}) \pm 0.37 \; ({\rm syst.}) \; {\rm pb}$$

$$\sigma_{\rm tot} = 68 \pm 7 \; ({\rm stat.}) \pm 19 \; ({\rm syst.}) \; {\rm pb}$$

- $\sigma(tot, theor) = 61.1 + / 2.2 \text{ pb}$
- Limits placed on aTGCs. Limits **competitive with other diboson analyses** and other experiments.
- First ATLAS aTGC analysis to recast results in an EFT

Backup

WW vs WZ

Data-mc (1)

Data-mc (2)

Data-mc (3)

Data-bkg

W+jets modeling systematics

- We have large systematics on shape of W+jets pT distribution. These come from varying two parameters in Alpgen:
 - ΔR jet-parton matching scheme
 - Renorm/fact. Scale ("qfac")

- For ΔR , samples generated for ΔR =0.4, 1.0 (nominal=0.7)
- For qfac, samples generated with double and half the nominal scale.

Auxiliary Plots (5)

Fiducial Phase-space (same for e/μ)

- W \rightarrow lv with lepton pT>25 GeV, $|\eta|$ <2.47 (l=e, μ)
- 2 jets with $|\eta|$ < 2.0. pT1>30 GeV, pT2> 25 GeV.
- MET>30 GeV
- mT>40 GeV
- $\Delta \phi$ (MET,j1)>0.8
- $|\Delta \eta(j_1,j_2)| < 1.5$
- $\Delta R(j_1,j_2)>0.7$ for pTjj<250 GeV
- 25<m(j1,j2)<250 GeV

aTGC formalism

• 5 C- and P-conserving aTGC parameters total: Δg_1^Z , $\Delta \kappa_Z$, λ_Z , λ_R , λ_R

$$\mathcal{L}_{WWV} = -i \; g_{WWV} \Big[g_1^V (W_{\mu\nu}^\dagger W^\mu V^\nu - W_\mu^\dagger V_\nu W^{\mu\nu}) + \kappa_V W_\mu^\dagger W_\nu V^{\mu\nu} + \frac{\lambda_V}{M_W^2} W_{\lambda\mu}^\dagger W_\nu^\mu V^{\nu\lambda} \Big]$$

• To simplify limits, work within the "LEP" scenario:

$$\lambda_z = \lambda_{\gamma}$$

$$\Delta \kappa_z = \Delta g_1^z - \Delta \kappa_{\gamma} \tan^2 \theta_w$$

• Fit three parameters: λ and $\Delta \kappa_{\gamma}$ and $\Delta g_{_{1}}^{Z}$

Fiducial Cross-section

- New addition to analysis: fiducial cross-section measurement
- Standard fiducial cross-section definition:

$$\sigma_{fid} = \frac{N_{meas}}{\mathcal{L} \cdot C}$$

• For us, measuring WW+WZ simultaneously, so fiducial cross-section more complicated:

$$\sigma_{fid} = \frac{N_{meas}}{\mathcal{L} \cdot D_{fid}}$$

$$D_{fid} = f_{fid}^{WW} \cdot C^{WW} + (1 - f_{fid}^{WW}) \cdot C^{WZ}$$

$$f_{fid}^{WW} = \frac{1}{1 + \frac{\sigma_{\text{WZ,MC@NLO}} \cdot A^{WZ} \cdot \mathcal{B}^{WZ}}{\sigma_{\text{WW,MC@NLO}} \cdot A^{WW} \cdot \mathcal{B}^{WW}}}$$

Nmeas = β *Nexp, where β is extracted from mjj fit

Denominator has weighted average of CWW and CWZ

Data-Driven Multi-jet Estimate

- Control regions enhanced in multijet fakes:
- Electron: medium++, not tight++
- Muon: invert d0sig requirement
- Obtain MET templates from control regions
- Fit full MET distribution to extract multi-jet normalization
- Simultaneously extract scale-factors for W/Z+jets used for data-MC comparison
- QCD mjj shape obtained from control region, after subtracting other bkgs

aTGC limit calculation

• aTGC's modeled with MC@NLO+Herwig – same generator as for SM signal.

- Systematics handled by introducing nuisance parameters into fit.
- Normalization systematics: 20% W+jets, 15% top, 15% QCD multi-jet (same as xsec-fit), 15% signal (larger than for x-sec, because of extra mjj cut)
- Shape systematic: same as xsec-fit, except for negligible components.